133 research outputs found

    The impact of the urban canyon geometry in the nocturnal heat island intensity: analysis by a simplified model adapted to a GIS

    Get PDF
    A geometria urbana é um dos fatores de maior influência na intensidade da ilha de calor urbana. Seu estudo requer a caracterização de cânions urbanos, geralmente medidos pela relação entre a altura dos edifícios e a largura da rua (H/W), conceito aplicado no modelo numérico de Oke em 1981. O objetivo deste artigo é verificar o impacto da geometria do cânion urbano na intensidade de ilhas de calor noturna. Para isso, foram realizados levantamento de dados climáticos e de geometria urbana em duas cidades brasileiras. Os valores de intensidade de ilha de calor foram confrontados com os simulados pelo modelo original de Oke (1981), o qual foi calibrado e adaptado à plataforma SIG, de forma a possibilitar a incorporação de outro parâmetro de geometria, além da relação H/W: o comprimento de rugosidade. Esse processo gerou uma nova ferramenta de cálculo, que é denominda THIS (Tool for Heat Island Simulation). Aplicou-se o novo modelo para simular alguns cenários urbanos hipotéticos, que representam vários tipos de cânions urbanos. Os resultados demonstraram que cânions urbanos de maior rugosidade amenizam as intensidades de ilha de calor noturna em relação a um cânion de mesmo valor de relação H/W e menor rugosidade.Urban geometry is one of the main factors influencing the development of urban heat islands. The study of urban geometry requires a characterization of urban canyons, which can be usually measured by the H/W ratio (a relationship between the height and the width of a street), a concept applied in a numerical model by Oke in 1981. The aim of this paper is to verify the impact of the canyon geometry on the intensity of the nocturnal urban heat islands. For this purpose, measurements of climate data and urban geometry were conducted in two Brazilian cities. The values of heat island intensity were cross-examined to those generated with the application of the original Oke's model. Therefore, this latter was calibrated and adapted to run in a GIS platform, allowing the incorporation of a geometric parameter other than the H/W ratio - the roughness length. Then, this process produced a new calculation tool, which is called THIS (Tool for Heat Island Simulation). The new model was applied to simulate some hypothetical urban scenarios representing several urban canyons types. The results showed that the urban canyons with the largest roughness reduce the nocturnal heat island intensities in relation to an urban canyon of the same H/W value, but presenting lower roughness rates instead.Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    The Reliability of Global and Hemispheric Surface Temperature Records

    Get PDF
    The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time

    Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong

    Get PDF
    Background Prior studies from around the world have indicated that very high temperatures tend to increase summertime mortality. However possible effect modification by urban micro heat islands has only been examined by a few studies in North America and Europe. This study examined whether daily mortality in micro heat island areas of Hong Kong was more sensitive to short term changes in meteorological conditions than in other areas. Method An urban heat island index (UHII) was calculated for each of Hong Kong’s 248 geographical tertiary planning units (TPU). Daily counts of all natural deaths among Hong Kong residents were stratified according to whether the place of residence of the decedent was in a TPU with high (above the median) or low UHII. Poisson Generalized Additive Models (GAMs) were used to estimate the association between meteorological variables and mortality while adjusting for trend, seasonality, pollutants and flu epidemics. Analyses were restricted to the hot season (June-September). Results Mean temperatures (lags 0–4) above 29°C and low mean wind speeds (lags 0–4) were significantly associated with higher daily mortality and these associations were stronger in areas with high UHII. A 1°C rise above 29°C was associated with a 4.1% (95% confidence interval (CI): 0.7%, 7.6%) increase in natural mortality in areas with high UHII but only a 0.7% (95% CI: −2.4%, 3.9%) increase in low UHII areas. Lower mean wind speeds (5th percentile vs. 95th percentile) were associated with a 5.7% (95% CI: 2.7, 8.9) mortality increase in high UHII areas vs. a −0.3% (95% CI: −3.2%, 2.6%) change in low UHII areas. Conclusion The results suggest that urban micro heat islands exacerbate the negative health consequences of high temperatures and low wind speeds. Urban planning measures designed to mitigate heat island effects may lessen the health effects of unfavorable summertime meteorological conditions

    Performance of a frost hollow as a hemispherical thermal radiometer

    Full text link
    Radiant sky hemispheric temperature, snow-surface temperature, and thermal profiles within the snowpack were measured at night in a frost hollow in southeastern Michigan, U.S.A. Snow-surface temperatures remained 3° to 5°C colder than air temperatures at 3 m above the snow surface and 6° to 7°C colder than air temperatures at 18 m, the height of the hollow's rim above its floor. Due to suppression of turbulent heat transfer, the energy balance at the surface was dominated by net longwave radiation; energy involved in sensible heat transfer through the snow was equal to only about 10% of the incoming longwave radiation. Incoming longwave radiation can be expressed as a linear function of surface temperature by means of a regression equation, which yields a coefficient of determination of 0.75. Die Strahlungstemperatur der Himmelshemisphäre, die Schneeoberflächentemperatur und thermische Profile in der Schneedecke wurden in einer klaren Nacht in einer Frostmulde im Südosten von Michigan, U.S.A., gemessen. Die Schneeoberflächentemperatur blieb 3 bis 5°C kälter als die Lufttemperatur in 3 m über der Schneeoberfläche und um 6 bis 7°C kälter als die Lufttemperatur in 18 m Höhe, das ist die Höhe des oberen Randes der Mulde über ihrem Boden. Bei Bestimmung der turbulenten Wärmeübertragung war der Energiehaushalt an der Oberfläche von der langwelligen Strahlungsbilanz beherrscht. Die mit der Transport fühlbarer Wärme durch den Schnee verbundene Energie betrug nur ungefähr 10% der langwelligen Einstrahlung. Die langwellige Einstrahlung kann durch eine lineare Funktion der Oberflächentemperatur mittels einer Regressionsgleichung ausgedrückt werden, die einen Regressionskoeffizienten von 0,75 ergibt.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41662/1/703_2005_Article_BF02273978.pd

    Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas

    Get PDF
    Nine methods to determine local-scale aerodynamic roughness length (z0) and zero-plane displacement (zd) are compared at three sites (within 60 m of each other) in London, UK. Methods include three anemometric (single-level high frequency observations), six morphometric (surface geometry) and one reference-based approach (look-up tables). A footprint model is used with the morphometric methods in an iterative procedure. The results are insensitive to the initial zd and z0 estimates. Across the three sites, zd varies between 5 – 45 m depending upon the method used. Morphometric methods that incorporate roughness-element height variability agree better with anemometric methods, indicating zd is consistently greater than the local mean building height. Depending upon method and wind direction, z0 varies between 0.1 and 5 m with morphometric z0 consistently being 2 – 3 m larger than the anemometric z0. No morphometric method consistently resembles the anemometric methods. Wind-speed profiles observed with Doppler lidar provide additional data with which to assess the methods. Locally determined roughness parameters are used to extrapolate wind-speed profiles to a height roughly 200 m above the canopy. Wind-speed profiles extrapolated based on morphometric methods that account for roughness-element height variability are most similar to observations. The extent of the modelled source area for measurements varies by up to a factor of three, depending upon the morphometric method used to determine zd and z0
    corecore